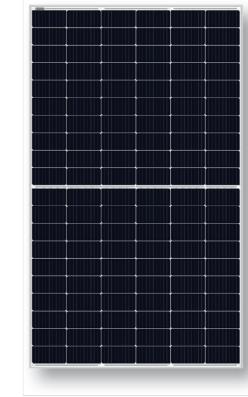


SOLARWATT Panel classic H 1.1 pure

Modulo in Vetro-Lamina Modulo top con le migliori prestazioni


Con il modello classic, SOLARWATT offre moduli fotovoltaici economici, robusti, ad alte prestazioni e di comprovata qualità. Sono durevoli, ad alto rendimento, resistenti agli agenti atmosferici ed alle intemperie e soddisfano gli elevati standard di qualità

I moduli sono dotati di una solida garanzia pluridecennale sul prodotto e un'assicurazione Protezione Completa di cinque anni compresa e gratuita.

Caratteristiche del prodotto

 Sorting positivo al 100 % Resistenza alla salsedine

Protezione completa contro PID

SOLARWATT Service

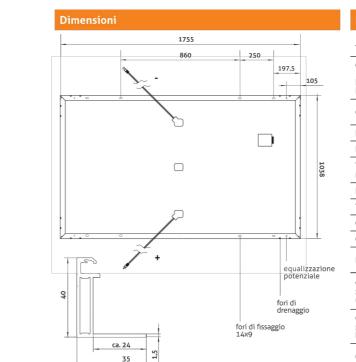
Protezione Completa opzionale (fino a 100 kWp)*

12 anni di garanzia sul prodotto secondo le "Condizioni di garanzia per moduli SOLARWATT"

Ritiro e smaltimento in conformità con le disposizioni nazionali

25 anni di Garanzia sulle prestazioni sul 80 % della potenza nominale secondo le "Condizioni di garanzia per moduli SOLARWATT"

*Con riserva di modifiche a seconda delle disposizioni nazionali, per maggiori informazioni visita il sito www.solarwatt.it.


Con riserva di modifiche ed errori AZ-TDB-PMS-2235 | Questa scheda tecnica è conforme

SOLARWATT Italia SRL | 35100 Padova

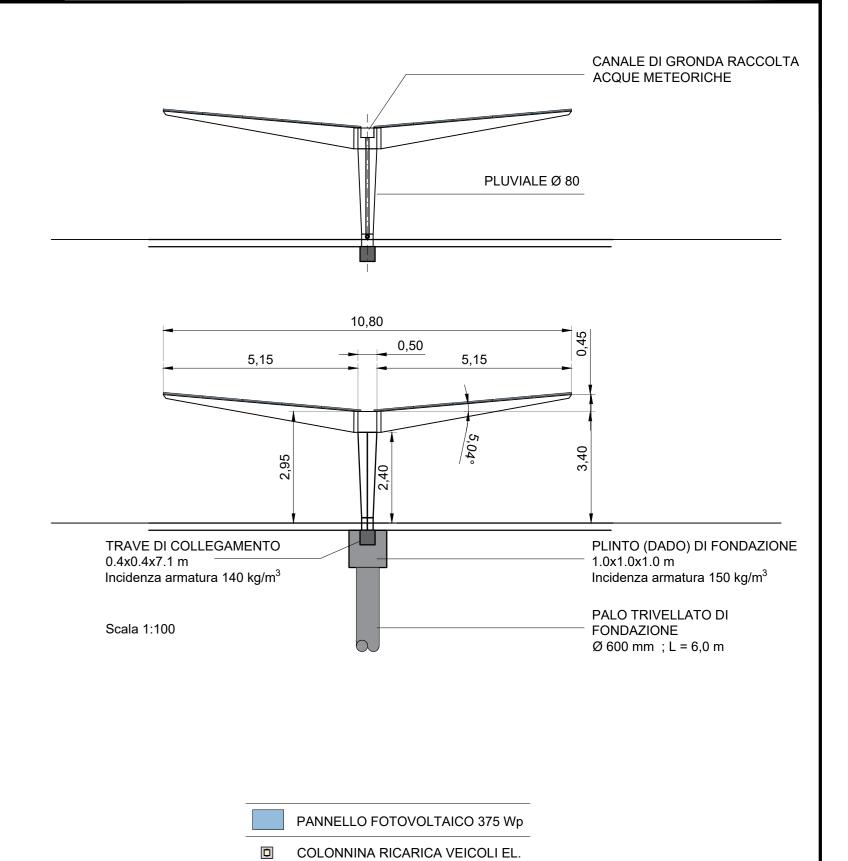
SOLARWATT GmbH | Maria-Reiche-Str. 2a | 01109 Dresden | Germany Certificazioni sec. DIN EN ISO 9001, 14001, 45001, 50001

Scheda tecnica SOLARWATT Panel classic H 1.1 pure

SOLARWATT 8 power to the people

		Duti dellerati	
		Tecnologia del modulo	Vetro-Lamina; cornice in alluminio
	105	Copertura Incapsulazione Materiale del retro	Vetro temperato solare con finitura antiriflesso, 3,2 mm Celle solari in incapsulamento polimerico Film composito a più strati, bianco
		Celle solari	120 Celle in silicio PERC monocristallino ad alta efficienza
П		Dimensioni delle celle	166 x 83 mm
		L x P x A / Peso	1.755 ^{±2} x 1.038 ^{±2} x 40 ^{±0,3} mm / ca. 21 kg
	1038	Tecnica di collega- mento	Cavi 2 x 1,0 m/4 mm² Stäubli Electrical MC4 connettori
		Diodi di bypass	3
		Tensione di sistema max.	1.000 V
		Classe di protezione	IP68
Н		Classe di isolamento	II (norma IEC 61140)
	zazione	Resistenza al fuoco	Classe di reazione al fuoco: C (norma IEC 61730) Reazione al fuoco: Classe 1 (D.M. 03/09/2001)
nziale gio		Carichi verificati secondo le norme IEC 61215	Carico da risucchio fino a 2.400 Pa (testato con carico di 5.600 Pa) Sovraccarico fino a 3.600 Pa (testato con carico di 5.400 Pa)
		Carichi raccomandati secondo le istruzioni e l'esperienza SOLARWATT	Si prega di fare riferimento alle specifiche nelle istruzioni di montaggio
		Certificazioni	IEC 61215 IEC 61730 LeTID 2 PfG 2387 (PID) IEC 61701 IEC 62716 MCS 005

Dati elettrici in condizioni di ST	·c
STC (Condizioni di prova standard): Intensità	di irraggiamento 1.000 W/m², ripartizione spettrale AM 1,5 temperatura 25±2°C, conforme alla norma EN 60904-3
Potenza nominale P _{max}	375 Wp
Tensione nominale V _{mp}	34,2 V
Corrente nominale I _{mp}	11,0 A
Tensione a vuoto V _{oc}	41,7 V
Corrente di cortocircuito I _{SC}	11,5 A
Efficienza del modulo	20,6 %


Tolleranze di misura: Pmax ±5 %; Voc ±10 %; Isc ±10 %, IMP ±10 %
Capacità di carico corrente inversa Ir: 20 A, il funzionamento dei moduli con corrente vagante immessa è consentito solo in caso di utilizzo di un fusibile della stringa con corrente di apertura ≤ 20 A.

NMOT (Nominal Module Operating Temperature): Irraggiamento 800 W/m², ripartizione spettrale AM 1,5, temperatura 20°C Condizioni di irraggiamento debole: Irraggiamento 200 W/m², temperatura 25°C, velocità del vento 1m/s, sotto carico

Tolleranze di misura: Pmax $\pm 5\%$; Voc $\pm 10\%$; Isc $\pm 10\%$, IMP $\pm 10\%$ Riduzione del rendimento del modulo in caso di diminuzione dell'irraggiamento da 1000 W/m² a 200 W/m² (a 25°C): $4\pm 2\%$ (relativa) / $-0.6\pm 0.3\%$

				1/0		
	Pm=370	w	375	_		
				<u>%</u> ≅ 100		
/		H	_	E.		
				္ရိ 60	\vdash	-
		1	_	-	\vdash	-
		1	/3	20	\vdash	+++
10 20	30	40	4			
				373 300 225 ₹ 150 €	300 8 100 225 8 20 100 150 a 20	375 300 225 \(\sum_{\text{au}}\) \(\sum_{\text{au}}

Caratteristiche termiche					
Temperatura di esercizio	10 18586				
· · · · · · · · · · · · · · · · · · ·	-40 +85 °C				
Temperatura ambiente	-40 +45 °C				
Coefficiente di temperatura P _{max}	-0,37%/K				
Coefficiente di temperatura V _{oc}	-0,27%/K				
Coefficiente di temperatura I _{sc}	0,04%/K				

COMUNE DI TURI

STALLO PER VEICOLI ELETTRICI

POZZETTO IMPIANTO ELETTRICO

TUBAZIONE IN PECORRUGATO

AMPLIAMENTO DELLA STRUTTURA TURISTICO RICETTIVA "RELAIS VILLA MENELAO"

PROPRIETA':

Villa Menelao S.r.l. Società Uninominale Via Le Ginestre II, Tratto 1 - 70010 TURI (BA) P. IVA e C.F.: 04795040726

PROGETTO: ☐ ARCHITETTURA:

☐ IMPIANTI:

giuseppe romanazzi

GNT PROGETTI S.r.l.

☐ STRUTTURE: Ing. Vito Colaianni

☐ URBANISTICA: Ing. Antonio Colaianni

☐ GEOLOGIA ED AMBIENTE: Geologo Pasquale Pirulli

Tav.13

1:200

04.03.2023

OGGETTO: IMPIANTO FOTOVOLTAICO DI AUTOPRODUZIONE ENERGIA ELETTRICA E COLONNINE RICARICA VEICOLI ELETTRICI

				04.03.2023
				30.08.2021
CODIZIONE Description	DED Coop of	CONTR Chi'd	ADDD Ammed	DATA Des

01 AGGIORNAMENTO DESCRIZIONE - Description RED. - Prep.d CONTR.- Chk'd APPR.- Appr.d DATA - Date